
Deep Learning by Example on Biowulf

Class #2: Recurrent and 1D-Convolutional neural networks 

and their application to analysis of a non-coding DNA

Gennady Denisov, PhD



Class #2 Goals

Standard non-bio RNN benchmark: 
IMDB movie review sentiment prediction:

DL networks to be discussed:
- Recurrent Neural Networks (RNNs)

- 1D Convolutional Neural Networks (1D-CNNs)

Purpose: process sequences of values

Popular non-bio applications:
- natural language processing 

- text document classification  

- time series classification, comparison and forecasting

- …

3) exploration of the long-range dependencies between motifs/different parts of fragments

Bio example #2: 
predicting the function of non-coding DNA

[010011010100111010…110]

Distinctive features of the biological example:

1) a vector of binary labels is assigned to each data sample 

2) identification of the motif sequences

Motif: short, recurring pattern in DNA Motif database

that is presumed to have a certain biological function.



Examples summary

1)  RNNs process sequences of values, CNNs - grid values

2)  both RNNs and CNNs share parameters between different 

parts of a model, unlike MLP, where each weight is unique

3)  RNNs allow cyclic connections, unlike CNNs or MLP /

Dense networks, which are feedforward / have no cycles

4)  both examples #1 and #2 take a supervised ML approach, 

5)  yet are complementary in the way their training is performed:

#1: limited ground truth data ⇒ augmentation, fit_generator

#2: plenty of ground truth data ⇒ no augmentation, fit



Motif detection: a prototype example #1
tensors, layers, parameters, hyperparameters, Dense, SimpleRNN, Conv1D,

RNN memory

X

Conv2D
- parameters: wi, b

- hyperparameters:

f  = filter/kernel size (=3),

padding (= “valid”)

Y =  wi*Xi+b

01011100101

Yt = A(b + wx1·Xt-1+ wx2·Xt + wx3·Xt+1)

Conv1D
- # params = f =3+1 = 4

- parallelizible, can be done

in any order

- memoryless

t

Y

Yt

X

SimpleRNN
- # params = 3

- sequential, can only be done  

left →right or right → left 

- has memory

Yt = A(b +wXY·Xt + wYY·Yt-1)

t

Y 

X

YtYt-1

Input: a set of training sequences of 0’s and 1’s 

and binary labels assigned to each sequence,

depending on whether or not a certain (unknown)

motif is present in the sequence. 

Task: train the model on the data, so that it could

automatically predict labels for new sequences. 

Example:

Model:

Dense: 
Z = A( wi*Yi+ b)

X

Z

Y

SimpleRNN
or

Conv1D



SimpleRNN-based code

for motif detection

Header:

- general Python imports

- Dense, SimpleRNN 

- Sequential

Get data

- a motif to search for 

- generate synthetic data:

x_train, y_train

x_test,  y_test

Define a model

- Sequential  construct

approach

- compile, loss, optimizer

Run the model

- fit, checkpoint, epoch,

callbacks

- predict



Motif discovery: a prototype example #2

Input: 1) pre-trained weights from the previous example,

but using Conv1D instead of SimpleRNN

2) a set of testing sequences of 0’s and 1’s 

similar to the previous example  

Task:  determine the motif sequence

Example: 01011100101

Y.Ding et al, bioRxiv 2019; doi: https://doi.org/10.1101/163220 

2) The upper bound of the motif size

is (approximately) known

Z = A( wi·Yi+ b)

Testing

sequence

(Implicit) Assumptions 

of the heuristic approach: 

1) All the weights of the Dense layer

are positive

1) Determine an “optimal” position of a

filter in each “good” testing sequence:

Xopt = argmax(Conv1D(X))

PWMs: G.D.Stormo et al, NAR 1982

large value

Testing data:

Algorithm:

2) Determine the motif as PWM /

consensus sequence over the 

vicinities of Xopt in the test sequences



Conv1D-based code 

for motif discovery

Run the model:

- load weights

- extract the testig

data with motif

- determine an 

“optimal” position

in test sequence

- extract instances

- compute PWM 

and the motif

sequence

Header. 

Get data. 

Define a model



Stochastic Gradient Descent optimizer 
gradient descent (GD), mini-batch GD

(Mini-batch) Stochastic Gradient Descent:

- use the wJ(wt ; x, y) averaged over a mini-batch of samples (= data items x,  labels y)

- N / batch_size iterations per epoch (N = total number of samples, batch_size =32 by default) 

γ = learning rate

wJ = gradient of loss with respect to weights 
w = vector of weights

t = iteration #

wt+1  = wt - γ ·wJ(wt ) - basic gradient descent formula for updating weights

Using  SGD

with defalt 

options

Using  SGD 

with customized

options

(To be continued on a backup slide)



Training a feedforward network
backpropagation, chain rule, vanishing gradient 

(t)

t

’(t)

(the component of ) 

the gradient of loss

Backpropagation purpose: compute the gradient of loss

Z(w) =  (w·X  + b) (mse) loss  J =      (Z(w) – T)2
1

2

=  (Z-T) · (Z/ wi)·wi

=  (Z-T) · ′(w·I + b) · Ii     · wi

Ji =  ( J / wi ) · wi

input 

data

Perceptron

output

targets

TI

wi

Dense

Activation
J   w

Multi-layer perceptron (MLP)

Y1 =  (W1·X  + B1)Y2 =  (W2·Y1 + B2) 

 Ji = (Z – T) ·′ (W3·Y2 +B3) ·W3·′(W2·Y1+B1) ·W2·′(W1·X + B1) ·Xi · wi

Backpropagation for MLP:

Z =  (W3·Y2 + b3)

(the component of ) 

the gradient of loss
wi

Dense Dense
Dense

Unfolded SimpleRNN
- similar to the very deep feedforward network:  

Yt = (WX· Xt + WY· Yt-1 + B)
- weights are shared across the (time) layers

The deeper the network is, the more likely that 

the vanishing gradients issue will occur



Vanishing gradients: a prototype example #3

# training epochs     predict. acc

SimpleRNN

100                  91.81%

300                  91.89%

500                  92.90%

700 92.94%

LSTM

100                  97.92%

300                  98.84%

500                  98.99%

700                  99.05%

A.Joulin and T.Mikolov . arXiv:1503.01007v4 (2015)



How to run the prototype examples on Biowulf?



Biological example #2: Predicting the function of

noncoding DNA de novo from sequence 

with DanQ and DeepSEA

Models:
DanQ (2016) – Keras,

DeepSEA (2015) – Torch (reimplemented in Keras),

DeepBind (2015), Basset (2016) – Torch, 

FIDDLE (2016), DeepMotif (2016), 

Basenji (2017) – Tensorflow, DeepCpG (2017), …

DL frameworks:
Keras, 

Torch,

Tensorflow,

…

Events (“targets”; total = 919 types):

- transcription factor binding sites (690 types)

- DNase I hypersensitivity sites (125 types)

- histone marks (104 types)

Genome coordinate

Target 

intensity

Call

peaks Narrow 

peak

format

One-hot

encode
DeepSEA

data

Network types:
RNN,

1D-CNN

NGS

DanQ:        D.Quang, X.Xie, Nucl. Acids Res. (2016) 

DeepSEA: J.Zhou, O.G.Troyanovskaya, Nature Methods (2015)

Review:     G.Eraslan et al., Nature Reviews Genetics (2019)

Task:
predict the targets 

directly from 

DNA sequence



Overview of the training code
(only the main function is shown)

Get data

- training, testing and 

validation data

Imports statements,

other function definitions

Define a model

- DeepSEA model

- DanQ model

- MaxPooling1D, 

Flatten, Dropout

- LSTM and BLSTM

- compile, loss

- optimizer

Run the model

- fit

Header

- parse the command

line options



Available data
one-hot encoding; training, validation, and testing data

y (labels): N x 919

Num. targets (= 919)

010100

X (data) : N x 1000 x 4

Sequence length (=1000 bp)

4

Training data:  N = 4.4 M => fit: adjust parameters

Validation data: N =  8 K => fit: tune hyperparameters

Testing data: N = 455 K => predict: test predictions

One-hot encoding:



The DeepSEA model

J.Zhou, O.G.Troyanskaya, Nature Methods (2015)

Layers:  Conv1D, Dense,

MaxPooling1D, Dropout, 

Flatten

First Conv1D layer: capture the sequence motifs.

Second Conv1D and third Conv1D: produce higher level 

representation of the data output by previous layer

Dense:  linearly combine outputs and produce target probs.



Conv1D, MaxPooling1D, Dropout and Flatten layers

MaxPooling1D(pool_size = 2)

2.0 3.0 0.0 5.0 2.5 0.0

2.0 1.0 5.0 0.0 4.0 1.5

3.0 5.0 6.0 3.0 2.0 0.0

4.0 4.0 0.5 1.5 1.0 2.0

4 x 6

1 x 3

5.0 6.0 4.0

3.0 0.0 1.5 2.0

0.0 3.0 0.0 7.0

0.0 5.0 7.0 0.0

0.0 5.0 0.0 0.0

3.0 2.5 1.5 2.0

4.0 3.0 5.0 7.0

6.0 5.0 7.0 2.0

2.5 5.0 2.0 2.0

Dropout (0.5)

4 x 4

Flatten()Conv1D(2, kernel_size = 3)

4 x 7

2 x 5A  

C  

G

T

4 x 4

3 x 4
1 x 12

Rectangular window 

of size = 4 x kernel_size

Output size 

= num_kernels 

x num_kernel_positions

Purpose: prevent the model from overfitting Purpose: prevent the model from overfitting

Purpose: resize the input tensor in order

to make the output acceptable 

by Dense layer



The DanQ model
LSTM, BLSTM, MaxPooling1D, Dropout, Flatten

D.Quang, X.Xie, Nucl. Acids Res. (2016)

Conv1D:  # params =        33,600; 

purpose: discover motif sequences     

BLSTM:   # params =   1,640,960; 

purpose: capture the long-range dependencies

between motifs / different parts o fragments



Long Short-Term Memory (LSTM) cell
Orig. study: S Hochreiter, J Schmidhuber, Neural computation 9, p.1735 (1997)

Tutorial:      https://adventuresinmachinelearning.com/keras-lstm-tutorial

LSTM:

1) Xt, Yt-1, St-1 => St

2) Xt, Yt-1, St => Yt

# parameters = 4*(2n +n2)

SimpleRNN:

1) Xt, Yt-1 => Yt

G(Xt,Yt-1 )  = tanh(bG + wXG· Xt + wYG·Yt-1)     

I(Xt, Yt-1 )  =      (bI + wXI· Xt + wYI·Yt-1)

F(Xt ,Yt-1 ) =      (bF + wXF· Xt + wYF·Yt-1)

E(Xt, Yt-1 ) =      (bE + wXE· Xt + wYE·Yt-1)

 = elementwise multiplication;  = sigmoid activation

1) St = St-1 F(Xt, Yt-1) + G(Xt, Yt-1) I(Xt, Yt-1) 

2) Yt = tanh(St ) E(Xt, Yt-1) 

Yt = tanh(b +wXY·Xt + wYY,· Yt-1)



How to run the DanQ code on Biowulf?

https://hpc.nih.gov/apps/DanQ.html

Using a single GPU:

Using 4 GPUs:

ROC curve:

Discovered motif sequence logo:



Summary

1) Further intro using simple examples

- SimpleRNN vs Conv1D layers/transformations

- the notion of the RNN network memory and interacting channels

- motif detection and discovery

- the SGD optimizer

- backpropagation, long-range sequence dependencies and 

vanishing gradients

2) Predicting the function of a non-coding DNA

- the DeepSEA and DanQ models

- MaxPooling1D, Dropout, Flatten and (Bidirectional) LSTM layers

- how to run the DanQ code on Biowulf   



BACKUP SLIDES



wt+1  = wt - γ ·wJ(wt )

Stochastic Gradient Descent optimizer (cont.) 

- the basic gradient descent formula

re-written
 wt = - γ ·wJ(wt ) ; wt = wt+1 - wt

- small γ → slow convergence along the valley

- larger γ → oscillations in the perpendicular dir.

loss J view from above

t

learning rate, momentum, Nesterov accelerated gradient

1) learning_rate 

- gradient descent formula

with momentum μ (usually, = 0.9)

 wt  = μ · wt-1 - γ ·wJ(wt )

2) momentum > 0

 wt  = μ · wt-1 - γ ·wJ(wt   -μ · wt-1)

- gradient descent formula with momentumμ

and Nesterov accelerated gradient

3) nesterov = True



Predicting motifs

David R. Kelley et al - Basset: …, Genome Res , 2016, 26:990–999

Overall, 45% of filters could be annotated


